National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Preparation of Mg-Ti based bulk materials via powder metallurgy
Žilinský, Martin ; Wasserbauer, Jaromír (referee) ; Březina, Matěj (advisor)
The aim of this thesis is preparation and characterization of bulk Mg–Ti based materials. In the first theoretical part properties of base materials and the complexity of preparation alloy from these metals is discussed. Second part is focused on powder metallurgy and its applicability on Mg–Ti system. In another part particle composites are described. In chapter current research another possible methods of alloy preparation from magnesium and titanium are mentioned. The experimental part of this thesis was the preparation of bulk Mg–Ti materials from metal powders. For sample preparation conventional methods of powder metallurgy and spark plasma sintering was employed. Furthermore a characterisation of these materials was done. Microstructure was observed. Present phases were found using X-ray diffraction analysis. Amounts of these phases were determined using a scanning electron microscope with energy–dispersive spectrometry and using X-ray fluorescence. Furthermore hardness was measured and bending test with evaluation was done. Significant difference in results of sample preparation using conventional methods of powder metallurgy and spark plasma sintering was observed.
Structure and mechanical properties of magnesium materials prepared by SPS
Pleskalová, Kateřina ; Hutařová, Simona (referee) ; Doležal, Pavel (advisor)
This diploma thesis deals with the processing of the magnesium-based powder materials with the addition of zinc by the spark plasma sintering. The aim of this thesis is to evaluate influence of sintering parameters and zinc content on the microstructure and mechanical properties of the material. First part of the thesis is literary research which is divided into two main chapters. The first chapter describes magnesium-based materials and mentions their use as biomaterials. The second chapter discusses powder metallurgy, specifically magnesium powders and spark plasma sintering. In the experimental part the powders were sintered at temperatures 300 °C and 400 °C and an analysis was performed using optical microscope, scanning electron microscope, then also EDS analysis and hardness, microhardness and three-point bending tests were performed. An increase in hardness was observed with increasing zinc content and with increasing sintering temperature. The flexural strength was higher for materials sintered at a temperature of 400 ° C.
Structure and mechanical properties of magnesium materials prepared by SPS
Pleskalová, Kateřina ; Hutařová, Simona (referee) ; Doležal, Pavel (advisor)
This diploma thesis deals with the processing of the magnesium-based powder materials with the addition of zinc by the spark plasma sintering. The aim of this thesis is to evaluate influence of sintering parameters and zinc content on the microstructure and mechanical properties of the material. First part of the thesis is literary research which is divided into two main chapters. The first chapter describes magnesium-based materials and mentions their use as biomaterials. The second chapter discusses powder metallurgy, specifically magnesium powders and spark plasma sintering. In the experimental part the powders were sintered at temperatures 300 °C and 400 °C and an analysis was performed using optical microscope, scanning electron microscope, then also EDS analysis and hardness, microhardness and three-point bending tests were performed. An increase in hardness was observed with increasing zinc content and with increasing sintering temperature. The flexural strength was higher for materials sintered at a temperature of 400 ° C.
Preparation of Mg-Ti based bulk materials via powder metallurgy
Žilinský, Martin ; Wasserbauer, Jaromír (referee) ; Březina, Matěj (advisor)
The aim of this thesis is preparation and characterization of bulk Mg–Ti based materials. In the first theoretical part properties of base materials and the complexity of preparation alloy from these metals is discussed. Second part is focused on powder metallurgy and its applicability on Mg–Ti system. In another part particle composites are described. In chapter current research another possible methods of alloy preparation from magnesium and titanium are mentioned. The experimental part of this thesis was the preparation of bulk Mg–Ti materials from metal powders. For sample preparation conventional methods of powder metallurgy and spark plasma sintering was employed. Furthermore a characterisation of these materials was done. Microstructure was observed. Present phases were found using X-ray diffraction analysis. Amounts of these phases were determined using a scanning electron microscope with energy–dispersive spectrometry and using X-ray fluorescence. Furthermore hardness was measured and bending test with evaluation was done. Significant difference in results of sample preparation using conventional methods of powder metallurgy and spark plasma sintering was observed.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.